Math 4650 Homework 1 Solutions

(d)
$$0 < |x-5| \leq 2$$

 $-2 \leq x-5 \leq 2$ and $x \neq 5$
 $3 \leq x \leq 7$ and $x \neq 5$
 $3 \leq x \leq 7$ and $x \neq 5$
 $2 \leq x \leq 7$ and $x \neq 5$
 $2 \leq x \leq 7$
 $3 \leq x \leq 7$
 $2 \leq x \leq 7$

(a)
$$X = \{5 + \frac{1}{n} \mid n \in IN\} = \{5 + 1, 5 + \frac{1}{2}, 5 + \frac{1}{3}, 5 + \frac{1}{4}, ...\}$$

(a) $X = \{5 + \frac{1}{n} \mid n \in IN\} = \{nf(x) = 5 \\ 5 + \frac{1}{5} \quad 6 \quad sup(x) = 6$
(b) $X = \{1 + \frac{(-1)^n}{n} \mid n \in IN\} = \{1 - \frac{1}{1}, 1 + \frac{1}{2}, 1 - \frac{1}{3}, 1 + \frac{1}{4}, 1 - \frac{1}{5}, ...\} = \{1 - \frac{1}{1}, 1 + \frac{1}{2}, 1 - \frac{1}{3}, 1 + \frac{1}{4}, 1 - \frac{1}{5}, ...\} = \{1 - \frac{1}{1}, 1 + \frac{1}{2}, 1 - \frac{1}{3}, 1 + \frac{1}{4}, 1 - \frac{1}{5}, ...\} = \{1 - \frac{1}{1}, 1 + \frac{1}{2}, 1 - \frac{1}{3}, 1 + \frac{1}{4}, 1 - \frac{1}{5}, ...\} = \{1 - \frac{1}{1}, 1 + \frac{1}{2}, 2 + \frac{1}{1}, 1 + \frac{1}{2}, 2 + \frac{1}{1}, 5 + \frac{1}{2}, 1 + \frac{1}{2}, 2 + \frac{1}{1}, 5 + \frac{1}{2}, 1 + \frac{1}{2}, 5 + \frac{1}{2},$

(d) $X = \{\frac{x}{1+x} \mid x \in \mathbb{R} \text{ with } -1 < x\}$

The set X consists of the y-values of this graph with -1 < xinf(x) does not exist Sup(x) = 1

(e)
$$X = \{x \in |R| | x^2 + | < 3\}$$

= $\{x \in |R| | x^2 < 2\}$

We see from the
picture that
$$X = \{x \in |R| - \sqrt{2} < x < \sqrt{2}\}$$
$$= (-\sqrt{2}, \sqrt{2})$$
$$inf(x) = -\sqrt{2}$$
$$sup(x) = \sqrt{2}$$

 $(F) X = \{ x \in \mathbb{R} \mid x^3 \leq 1 \}$

From the picture we see that X={xER xEI} = (- ۵۰ ۱

inf(x) does not exist sup(x)=1

(3) Let
$$x \in \mathbb{R}$$
 with $x \ge 0$.
Our assumption is that $x \le \varepsilon$ for all $\varepsilon > 0$.
Let's show this implies that $x = 0$.
Suppose $x > 0$.
Then, $0 < \frac{x}{2} < x$.
Set $\varepsilon = \frac{x}{2}$
By assumption $x \le \varepsilon$.
But then both $\varepsilon < x$ and $x \le \varepsilon$
Which is a contradiction.
Hence $x > 0$ cannot be true.
So, $x = 0$.

have that a = b. \square Supremum is the least Upper bound

Suppose A and B are non-empty subsets of IR bounded from above and below. Further assume that A=B. Let $s_A = sup(A)$ and $s_B = sup(B)$. Since SB is an upper bound for B We know that $b \leq S_B$ for all $b \in B$. This implies, because $A \subseteq B$, that $a \leq S_B$ for all $a \in A$. Thus, sp is an upper bound for A. Since Sa is the least upper bound for A we know that $S_A \leq S_B$. Thus, $SUP(A) \leq SUP(B)$. A similar argument shows inf(B)≤int(A). Yuu tuu You try. Also, if a E A, by def. We have $inf(A) \leq a \leq svp(A).$ $|\text{tence}, \text{inf}(B) \leq \text{inf}(A) \leq \text{sup}(A) \leq \text{sup}(B)$

Here inf(A) = -2 = inf(B) and sup(A) = 3 = sup(B)

but A≠B

PROOF #2 - USING THE INF/SUP THEOREM Proof: Let $S_A = Svp(A)$. Since ANBSA we know that XSSA for all XEANB. So, ANB is bounded from above by SA. Thus, s=sup(AnB) exists. Let's show that SSSA. Suppose that S7SA. SALS Then, $\Sigma = S - S_A > 0$. By the influe theorem Since S= SUP(ANB), there exists & EANB with SA<L<S. But then lEA and SA<1 which contradicts the fact that $S_A = sup(A)$. Therefore, SSSA. Similarly one can show that SESB. Thus, S < min { SA, SB} $So, Sup(ADB) \leq \min \{ Sup(A), Sup(B) \}.$

Γ

Thus,
$$x \le C$$
 for all $x \in B$.
So, c is an upper bound for B.
Since s_B is the least upper bound for B
we get that $s_B \le C$.
Thus, s_B is the least upper bound for AUB.
That is, $s_B = \sup(A \cup B)$.
So, $\sup(A \cup B) = \max \{ \sup(A), \sup(B) \} \}$

PROOF #2 - USING THE INF/SUP THEOREM
Proof:
Let
$$S_A = Sup(A)$$
 and $S_B = Sup(B)$.
We will assume that $S_A \leq S_B$.
Since $S_A \leq S_B$ we have that
 $S_B = Max \{ Sup(A), Sup(B) \}$
 $S_A \qquad S_B$

We first show that SB is an upper bound for AUB. Then $x \in A$ or $x \in B$. (A) If xEA, then X ≤ SA ≤ SB. If $x \in B$, then $x \leq SB$ (since $S_B = SUP(B)$) Thus, no matter the case we have XSSB. So, SB is an upper bound for AUB. Now we show that SB is the least upper bound for AVB. Suppose that c is another upper bound for AUB. We need to show that $S_B \leq C$. Suppose that SB>C. Then $\Sigma = S_B - C > 0$. By the inf/sup theorem, since SB=SUP(B), there exists LEB with c<l≤SB SR-E Then LEAVB and C<I. This contradicts the fact that c is

an upper bound for AUB.
Thus,
$$s_B > c$$
 can't be true.
So, $s_B \leq c$.
Thus, s_B is the least upper bound
for AUB.
So, $s_B = sup(AUB)$.
Thus, $max \{sup(A), sup(B)\} = sup(AUB)$.
So

(B)(a)
We break the proof into two cases.

$$\frac{\text{casel: Suppose } a \leq b}{\text{Then, } a - b \leq 0}$$
So, $|a - b| = -(a - b) = b - a$
Also, $b - a \geq 0$.
So, $|b - a| = b - a$
Thus, $|a - b| = |b - a|$.

$$\frac{\text{case } 2: \text{ Suppose } a > b}{\text{Then, } a - b > 0}$$
So, $|a - b| = a - b$
Also, $b - a < 0$.
So, $|b - a| = -(b - a) = a - b$
Also, $b - a < 0$.
So, $|b - a| = -(b - a) = a - b$
Thus, $|a - b| = |b - a|$.
In both cases $|a - b| = |b - a|$.

(8(b)) We break the proof
into four cases and use:
$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Case 1: Suppose a >0 and b >0
Then, $ab > 0$.
So, $|ab| = ab$, $|a| = a$, and $|b| = b$.
Thus, $|ab| = ab = |a| \cdot |b|$
Case 2: Suppose a >0 and $b < 0$
Then, $ab \le 0$
So, $|ab| = -ab$, $|a| = a$, and $|b| = -b$.
Thus, $|ab| = -ab = a(-b) = |a| \cdot |b|$
Case 3: Suppose a <0 and $b > 0$
Then, $ab \le 0$
So, $|ab| = -ab$, $|a| = -a$, and $|b| = b$.
Thus, $|ab| = -ab = (-a)b = |a| \cdot |b|$
Case 4: Suppose a <0 and $b < 0$
Then, $ab \ge 0$.
So, $|ab| = -ab$, $|a| = -a$, and $|b| = -b$.
Thus, $|ab| = -ab = (-a)b = |a| \cdot |b|$
Case 4: Suppose a <0 and $b < 0$
Then, $ab > 0$.
So, $|ab| = ab$, $|a| = -a$, and $|b| = -b$.
Thus, $|ab| = ab = (-a)(-b) = |a| \cdot |b|$
In all four cases we get $|ab| = |a| \cdot |b|$.

(8)(c)Using part (b) we get that (Use: {x if x > 0 |x|= {-x if x < 0 $\begin{vmatrix} 2 \\ -6 \end{vmatrix} = \begin{vmatrix} 2$ If b≥0, then t≥0 and tt If b<0, then 占<0 and 1台=-(古)=士;市 Thus, in either case 151=151 $|\text{tence}, |\hat{B}| = |a| \cdot |\dot{B}| = |a| \cdot |\dot{B}| = \frac{|a|}{|b|},$ (*) from above)

(8)(3)

Suppose that acxcb and acycb. We want to show that |x-y|<b-a We break the proof into two cases. Case 1: Suppose XZY. } = {Use: {c if c = 0 |cl = {-c if c < 0 Then, X-YZO. $S_{0}, |X-Y| = X-Y.$ We know a<x<b. Add-a to get O<X-a < b-a The equation acy is given. Su, - a7-y. Thus, $x - \alpha > x - y$ so, x-yzx-a <b-a Hence, [x-y]=x-y<b-a. Case 2: Suppose X<Y. Then, X-y<0. 50, [x-y]=-(x-y)=y-x We know a<y<b.

Add -a to get
$$0 < y - a < b - a$$

The equation $a < x$ is given.
So, $-a > -x$.
Thus, $y - a > y - x$.
Hence,
 $y - x < y - a < b - a$
So,
 $|x - y| = y - x < b - a$.
En both cases $|x - y| < b - a$.

$$\begin{split} \widehat{(b)}(e) \\ Note that \\ |\alpha| = |(\alpha-b)+b| \leq |\alpha-b|+|b| \\ So, \\ |\alpha|-|b| \leq |\alpha-b| \quad (*) \quad triangle \\ inequality \\ Also, \\ |b| = |(b-a)+a| \leq |b-a|+|a| \\ So, \\ -|b-a| \leq |a|-|b| \\ From part (a) of this problem, |a-b|=|b-a|. \\ Thus, -|\alpha-b| = -|b-a| \leq |a|-|b| \quad (**) \\ Hence, from (*) and (**) we get that \\ -|a-b| \leq |a|-|b| \leq |a-b| \\ Here we use this fuch from class: \\ I | a|-|b| | \leq |a-b| \leftarrow I \\ Ix | \leq c \text{ iff -cexes} \\ \hline \end{tabular}$$